Spin-valley Kondo effect in multielectron Si quantum dots
نویسندگان
چکیده
منابع مشابه
Spin-Lattice Relaxation in Si Quantum Dots
We consider spin-lattice relaxation processes for electrons trapped in lateral Si quantum dots in a [001] inversion layer. Such dots are characterized by strong confinement in the direction perpendicular to the surface and much weaker confinement in the lateral direction. The spin relaxation is assumed to be due to the modulation of electron g-factor by the phonon-induced strain, as was shown p...
متن کاملA tunable kondo effect in quantum dots
A tunable Kondo effect has been realized in small quantum dots. A dot can be switched from a Kondo system to a non-Kondo system as the number of electrons on the dot is changed from odd to even. The Kondo temperature can be tuned by means of a gate voltage as a single-particle energy state nears the Fermi energy. Measurements of the temperature and magnetic field dependence of a Coulomb-blockad...
متن کاملKondo Effect in Coupled Quantum Dots
We discuss Kondo systems in coupled-quantum-dots, with emphasis on the semiconductor quantum dot system. The rich variety of behaviors, such as distinct quantum phases, non-fermi liquid behavior, and associated quantum phase transitions and cross-over behaviors are reviewed. Experimental evidence for such novel characteristics is summarized. The observed behaviors may provide clues as to the re...
متن کاملQuantum Computing with Spin and Valley Qubits in Quantum Dots
This thesis addresses the concept of quantum computing with semiconductor quantum dots. The basic unit of a quantum computer is a quantum mechanical two-level system, the so-called quantum bit (qubit). The qubit can be defined as the spin of an electron confined in a quantum dot or as a two-dimensional subspace of the Hilbert space for several spins. Some semiconductors have several minima in t...
متن کاملValley splitting in Si quantum dots embedded in SiGe
We examine energy spectra of Si quantum dots embedded in Si0.75Ge0.25 buffers using atomistic numerical calculations for dimensions relevant to qubit implementations. The valley degeneracy of the lowest orbital state is lifted and valley splitting fluctuates with monolayer frequency as a function of the dot thickness. For dot thicknesses 6 nm, valley splitting is found to be 150 eV. Using the u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2007
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.76.205314